Krylov-Bogoliubov-Mitropolskii Method for Fourth Order More Critically Damped Nonlinear Systems
نویسندگان
چکیده
منابع مشابه
A new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملHigher - Order Krylov - Newton and Fast Krylov - Secantmethods for Systems on Nonlinear Partialdifferential Equationsh
متن کامل
Stability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملKrylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...
متن کاملNonlinear second-order dynamical systems on Riemannian manifolds: Damped oscillators
Linear as well as non-linear mathematical systems that exhibit an oscillatory behavior are ubiquitous in sciences and engineering. Such mathematical systems have been used to model the behavior of biological structures, such as the pulsating contraction of cardiac cells, as well as the behavior of electrical and mechanical components. Chaotic oscillators are currently being used in the secure t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Applied Mathematics
سال: 2015
ISSN: 2330-0043
DOI: 10.11648/j.ajam.20150306.15